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SUMMARY OF SCIENTIFIC PROGRESS TO DATE

Here brief summaries are given for topics where significant progress
has been achieved, but where as yet no papers have been prepared for
publication.

1. Non-Linear Theory (I. B. Bernstein and L. Friedland)

The non-linear theory of a steady state free electron laser amplifier
consisting of a relativistic electron beam in helical pump and axial con-
fining magnetic fields illuminated by monochromatic radiation has been form-
ulated. The introduction of Lagrangian variables permits an exact intepra-
tion of the continuity equation to express the current density at a general
field point in terms of the current density at injection and the velocity at
the field point in question. The axial electric field is found in a similar
way by integrating Poisson's equation. The parallel momentum equation is
reduced to an ordinary differential equation and permits the electron orbits
to turn in the wave frame, corresponding as one advances along the beam in
the direction of propagation to the development of multistreaming. The
reduced equations, and the coupled wave equations for the transverse vector
potential are being analyzed, and suitable numerical methods for their solu-
tion are being determined. Preliminary numerical studies have begun.

2. Quasi-Linear Theory (I. B. Bermstein and L. Friedland)

A quasi-linear theory of the steady free electron laser amplifier con-
sisting of a helical pump and relativistic electron beam illuminated by a
monochromatic wave has been formulated. A linearized WKB description is
employed to describe the electromagnetic field, and the steady state density,
mean velocity, etc. are determined correct to second order in the high fre-
quency amplitude. The helical pitch is allowed to vary with position so as
to keep the system in a configuration of maximum gain as the beam deceller-
ates on converting its energy into radiation. The analysis of the results
is continuing, numerical studies are underway, and a preliminary manuscript
has been prepared.

3. Exact Magnetic Fields of a Bifilar Helix (S. Y. Park, R. A. Smith, and
J. L. Hirshfield)

The static magnetic field of a bifilar helix has been derived exactly.
The components Bj, By, and B3 have each been determined as functions of r,
and 6-kz, where 2n/k is the period of the double helix, and where (&1, &7,
&3) is the basis vector set dictated by helix symmetry. In usual FEL theory
By = B3 = 0, and B2 = const. The theory developed here gives, for a helix
of specified radius and period, the radial beam positiomns for which the
usual assumption is valid. Higher order multi-pole fields are significant
off axis, where annular beams are commonly placed.

4, Non-Helical Orbits in a Free Electron Laser (S. Y. Park, R. A. Smith and
J. L. Hirshfield)

An exact analytic solution has been found for the orbit of a charged
particle moving in the combined magnetic field of a bifilar helical wiggler
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and a uniform solenoid. The axial velocity is shown to satisfy an anharmonic
oscillator equation whose solutions are Jacobian elliptic functions. Other
velocity components are readily determined from the axial velocity. Solu-
tions are classified according to the type of Jacobian elliptic function,
which in turn is determined by magnetic field parameters and initial particle
conditions. This exact solution is to be used to calculate the spectrum of
single-particle spontaneous emission; significant emission at harmonic wave-
lengths is indicated.

5. Electron Beam Analyzer (P. Avivi, F. Dothan, A. Fruchtman, and J. L. ?
Hirshfield)

Electromagnetic gain in a FEL is a sensitive function of the momentum
distribution of the beam electrons. The physical mechanism which dominates
the gain process may even change as one goes from a "cold" beam to a beam
with a finite skewed spread in momentum. It is thus crucial to measure the
momentum distribution of the electron beam in a FEL in order to interpret
the results. With this in mind we have designed a 90° magnetic deflection
analyzer which is capable of determining average electron momentum and rela-
tive distribution of momentum, for a small sample of the beam. At a deflec-
tion angle of 90° the analyzer's dispersion is a maximum; momentum resolu-
tion of 0.1% appears possible. This analyzer is now under construction, in
two stages. In the first stage, about to be installed, the analyzer responds
in a single channel (i.e., in a single momentum bin) on each accelerator
shot. 1In the second stage, a multichannel collector and readout will be
possible on each shot.

6. Operation of Febetron Accelerator (A. Ljudmirsky, J. Smulovits, F. Dothan, |
H. Sharon, and J. L. Hirshfield) |

The ~ 400 keV Febetron accelerator has been successfully operated in
the magnetic field and vacuum tank in which the free electron laser experi-
ments are to be conducted. The manufacturer's Blumlein pulse line has been
removed so that the 50 nsec Marks bank is terminated directly by the foil-
less field emission diode. Diode impedance is adjusted, both empirically
and with the guidance of the NRL experience, by shaping the cathode stem
and the anode geometry. Stable beams in the current range 100-1000 A have
been successfully generated and launched along the full axis of the combined
guide and wiggler magnetic fields of the device. Electromagnetic radiation
and gain measurements at 35 GHz are about to begin.

ey, Aoy e
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Free-Electron Laser with a Strong Axial Magnetic Field

L. Friedland and J. L. Hirshfield
Department of Engineering and Applied Science, Mason Laboratory,

Yale University, New Haven, Connecticut 06520
(Received 27 February 1980)

A small-signal theory is given for gain in a free-electrun laser comprising a cold
relativistic electron beam in a helical periodic transverse, and a strong uniform axial,
magnetic field. Exact finite-amplitude, steady-state helical orbits are included. If
perturbed, thase orbits oscillate about equilibrium, so that substantial gain enhancement
can occur if the electromagnetic perturbations resonate with these oscillations. This
gain enhancement need not be at tha cost of frequency upshift.

PACS numbers: 42.55.-f, 41.70.-t, 41.80.Dd

Intensive activity is underway to exploit the
gain properties of a relativistic electron beam
undulating in a periodic transverss magnetic field.
Such free-electron laser (FEL) configurations
have provided oscillation at 3.4 (Ref, 1) and 400
sm,? and amplification at 10.6 um.® Theory has
advanced apace,' and elaborate schemes have
been proposed for obtaining high FEL efficiency.’
A factor which limits the practical application of
this interaction at wavelengths shorter than per-
haps a few microns is the rapid decrease in
small-signal gain G, as the electron energy in-
creases, This is shown explicitly in the weéli-

1456

known result® for G, in the single-particle limit
(i.e., when collective effects are negligible)

Go‘(wpg/koc)a(koL/ZY)aF'(o)- 1)

Here w, and y are the beam plasma frequency
Ne?/me, and normalized energy W/mc?, k, and §
are the heiical transverse magnetic field wave
number 27/I and normalized strength e B /mck,,

L is the interaction length, and F'(#) = d/d6)(sind/
8)? is the line-shape factor, with 8 =[kp,, - w(1

- v,o/'c)] (L/2c), where v,, is the unperturbed elec-
tron axial velocity. The peak gain occurs at §
=1.3, where F'(8) =0.54. For example, withy

© 1980 The American Physical Society
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=10, 1=1.05 cm, w,=5x10" gec™?, ¢=1 (B, =10.2
kG), and L =130 cm, the peak gain is Gy, =0.002 47
at a2 wavelength of 105 um. For y =100, !=10.5
cm, w,=2x10% sec™!, £=1(B,=1.02kG), and L
=260 em, the peak gain is Gy, =0.003 16 at a wave-
length of 10.5 um., These gain values may be
large enough to sustain oscillations if highly re-
flecting mirrors are judiciously added but the
strong helical fields required (particularly the
10.2-kG case) may be beyond the capability of
present superconducting coil technology.’

A suggestion has appeared for enhancing the
small-signal gain above values given by Eq. (1)
(or for achieving comparable gains with smaller
B,) by employing a strong axial magnetic field so
as to exploit resonance between the cyclotron fre-
quency and the undulatory frequency.® The pres-
ent Letter presents a single-particle derivation
for the small-signal gain of a FEL in a uniform
axial magnetic field B,. We shall demonstrate
that careful adjustment of the system parameters
will allow enhancement of the FEL small-signal
gain by an order of magnitude or more (for the
above examples) without increasing the undulatory
velocity. This result goes beyond that predicted
by Sprangle and Granatstein® who have suggested
that the only effect of the axial magnetic field
would be to add a multiplicative factor (1 -/
kqcy) ? to Eq. (1), due to the aforementioned res-
onance giving an enhanced undulatory velocity v,
where Q =eB,/m. This result is in fact predicted
by our analysis as a limiting case. Of course,
any mechanism which increases the undulatory
velocity v, would increase the gain, but this
would also reduce the relativistic frequency up-
shift, since

W=k (1l =v4/C)" ! =277k c(1 +v% ,2/c?) 1,

If, for example, yv./c =1 without the axial mag-
netic field, then a given gain enhancement 7
achieved through this resonance alone would re-
sult in a reduction in frequency upshift by a fac-
tor (1 +n)/2. The process we describe in this
Letter will be shown to permit significant gain
enhancement without undue sacrifice in frequency
upshift, The gain enhancement originates when
the electromagnetic perturbations resonate with
the natural frequency of oscillation of electrons
on finite amplitude equilibrium helical orbits.
Prior workers have not considered this effect.

A full derivation of our result will be presented
elsewhere.” Exact unperturbed relativistic orbits
are considered in the customary FEL model mag-

netic field
EG) =Byé,+B.(é, coskz +é, sinkz). (2)

These orbits, which have been the subject of re-
cent study,’® can possess more than one steady
state, depending upony, B,, B,, and k,. These
steady states are characterized by the normalized
velocity components (i.e., u, =v,/c)

=0, uzg=kofuse/kgsey —Q/c),

@3)
o = (1 —uy’ =77 %)'2,
where the basis vectors é,(z) =-é&, sinkz +é,
X coskZ, €,(z) =—&,coskz -&,sinkz, and é,(z)
=2, have been introduced to track the symmetry
of the transverse magnetic field. Figure 1 shows
Uy, v8 /¢ for ky=6.0 cm™!, £=1.0, andy =10,
For 0>Q. =kc[@? =1)1/2 - £27]32 it is seen
that only one branch exists (branch C). But for
< Q. two additional branches (4 and B) are al-
lowed: Branch B has been shown to be unstable,
in that the orbits exhibit nonhelical, highly an-
harmonic motions, while branches A and C have
orderly helical orbits. Stability is insured if u?
=aq? - bd >0, where a =k Cti,of /YUy, b =Qu../yu,,,
andd =k,c{/y. The quantity s is the natural res-
onance {requency in response to small perturba-
tions of the orbit: We shall show that strong res-
onance response of the electrons to electromag-
netic perturbation can lead to enhanced FEL gain
for small 4, i.e., for Q close to Q.

The derivation of FEL gain proceeds by solving
the single-particle equations of motion, subject
to weak electromagnetic perturbing fields E )
=8, E,cos(kz - wt) and B =& ,(kc/w)E, cos(kz - wt),

L SN B
1.0 A ¢
u O8F ! -
30 = I -
osF B/) .
0.4} 1
02p Qe /e ]
oV o1
0 20 40 60 80 100
Q/c (cm")

FIG. 1. Steady-state normalized axial velocity u .,
as a function of normalized axial magnetic field /c.
For this example 2, = 6.0cm™!, £= 1.0, and v= 10.
Gain enhancement discussed in this work is for orbits
on either branch A or branch C.

1457




‘where

VorumMmr 44, NumpEr 22 PHYSICAL REVIEW LETTERS 2 JuNE 1980

about the equilibrium orbits on either branch A or C as discussed above. These equations are ?
!.41'“00“;-9/7)“:-@055/7)143-6'/7)141 "‘(eEl/ch)(kcua/w'l); (4) '
Uy == (Roclhs) = Q /v, = G /y )iy +@E/mey)cus/w = 1), )
&:’&ocg/Y)ul"‘(kc/w-us)e’/Y)’ ©)

where ¥ = - (e/mc)u,E, +u, E,) and
2(E, +iE,) =-E  exp{il (¢, +k)u,ct = wt +al}

with a the random initial electron phase. When time variations and electromagnetic fields are absent,
Eqs. (4)=(6) lead to the exact steady states given by Eq. (3). To linearize Eqs. (4)-(6), we introduce
the velocity perturbations w, =u; -u;, €u,, and retain only the lowest-order quantities. This results in
o, +p%w, =AE , cos(ft +a), or

w, -:,-_-g? [cos(8t +a) - cosut cosa + (8/u) sinut sina ] +u” 4, (0) sinut, (m

A =@ +8)(1 —uy) +buyy, B=clk +hlusg—w, w>kc, w,(0)=(@E,/2ymc)(l ~u,,)sina,
and w,(0) =0. The other components follow from

wy==aw, +@E/2mcy)(l =ty ~u,’) cos@t +a), w,(0)=0; (8)
and

Wy =dw, +@E o/2mcyu,,(1 = uy,) cosBt +a), w,(0)=0. 9

Equation (7) for w, exhibits the aforementioned natural resonance at frequency i, while the electromag-
netic perturbation drives the transverse motion at frequency 3. Gain enhancement can be expected
when p is close to 8.

The energy gain for an electron is calculated from (nc/e)dy/dt = —w E o= w,E ,, —t,oE,. The first-
order variation in electric field E,, originates from small phase variations as 4, changes. Thus this
becomes

(mc/e)dy/dt = =w E o =, E 3= SE ok +ko)cuy, sin@t +a) J,' dtw,(¢"). (10)

The third term in Eq. (10) is much larger than the other two on account of the factor k +k,. The domi-
nant single-particle energy transfer in the FEL (even with an axial magnetic field) is seen to be by
work ecu,E, done along the transverse undulatory motion, enhanced by the strong variation in E, as its
phase varies through w,. The energy variation [Eq. (10)] is averaged over random phase a to give
(dy/dt), which in turn leads to the gain through G =2(e,E?)" ‘ch’!o dt(dy/dt), where N is the beam
electron density and T =L/c is the total interaction time for the electrons in a system of length L.

The final result is

GaLaket , {[1 2 (a N +—=ﬂ”—)] [Fro)-EC22oF0-0)]

16y 2 1l-u 20
FO+9)-F6-9) _a [ oy PO +0)-PG -9)7 ]
+ 7 =3 | P'6) - 7 ]j’ (11)

where 8 =8T/2, ¢ =uT/2, F(x) =(sinx/x)?, and |
P(x) =xF (x)/2; and where we have approximated mation we may write
(k +ko)(1 =u,,) =k,, We shall examine Eq. (11) in _ 2 20 or
several limits. Glu>>3) =Z(w,?/16y)k,cu* T F1(6) (12)

For u> 3, only the terms involving F'(6) and where Z=2+ pu%a3+bd(1 —u,;)~'). In the case
P’(8) in Eq. (11) are significant, and on branch where the axial magnetic field is absent, Q=0,
A the latter of these is smaller than the former p=a=kycu,g>> 3, and u,=¢/y. Thus, Z =2 and
by at leas’ a factor 2¢. Thus to a good approxi- Eq. (12) goes over to Eq. (1). When @+0and .

1458




T Y. R ——y

VoLuME 44, NUMBER 22

PHYSICAL REVIEW LETTERS

2 JuNE 1980

>3, gain enhancement can be achieved as claimed
by the prior workers,® due to resonant enhance-
ment of u,, but not without sacrificing frequency
upshift, as discussed above.

However a more attractive possibility exists
when u is small, and approaches 3. Here one
can approximate Z = ,7%bd(1 - u,,) ! > 1; this re-
sults from resonance between the electromagnetic
perturbation which gives oscillatory motion to the
electron at a frequency 3, close to its natural
oscillation frequency u. Gain enhancement due
to large Z is seen to be possible without simul-
taneously increasing u,, so that the desirable
frequency upshift property of the FEL need not
be sacrificed.

We define a gain enhancement factor 7= G/G,
to compare two free-electron lasers, identical
except that one has a strong axial magnetic field,
while the second does not. In the first laser, the
transverse magnetic field B, is reduced so that
U, is the same for both lasers, (This assures
that both enjoy the same frequency upshift.) Then

n=Z{1~-(F(8+¢) - F(8-- @)} 20F(6)}. (13)

We have evaluated Eq. (13) for two examples with
the parameters cited in the first paragraph of this
Letter, holding {6{=1.3 where | £(¢)| has its
maximum value, The results are shown in Fig. 2
for the y=10 example, In Fig. 2(a) we plot the
gain enhancement factor nas a function of the
transverse magnetic field normalized strength ¢
for the FEL with the axial guide magnetic field.
The solid curves are for steady-state orbits on
branch C; the dashed curves for branch 4. On
branch A, gain occurs for 6>0, while on branch
C gain occurs for §<0, Two transverse magnetic
fields for the FEL without axial field correspond-
ing to £,=1and 0.5 are shown., Figure 2(b) shows
the required values of axial guide field. One sees
a gain enhancement of 31 (on branch C) at (=5
x10-2 for an axial guide field of 102 kG. The
transverse magnetic field required is reduced to
51 G, and the gain is increased to 0,0766 at A
=105 um. Higher gain is predicted on branch A.
For the y=100 example at A=10.5 pym, we find a
gain enhancement of 16 (on branch A) at £=3x10"2
for an axial guide field of 99.5 kG. The trans-
verse magnetic field required is reduced to 20.6
G, and the gain is increased to 0.0506.

Of course when the predicted single-pass gain
is large (say »0.1) this theory must be modified.
Furthermore, finite electron momentum spread
(neglected here) will mitigate against gain, as
for a FEL without a guide field. These effects

GAIN ENHANCEMENT inl

I
0!
-~ 60 -
= - £ =10
\E. T :--~~_ ~~——
S ssbogoz05 Tveen -
3 4f ]
sofF -
# b) - %
| U N SR N WA W

0 0.01 0.02 0.03 0.04 0.05 0.06

FIG. 2. (2) Gain ephancement | 1) and (b) correspond~
ing normalized axial magnetic field /¢, vs transverse
magnetic field parameter £. The values £, = 0.5 and
1.0 are for the FEL without axial field, and provide
the same x.; as do the indicated (smaller) values of
¢ for the FEL with the indicated axial field strength.
Example is for y= 10, k;=6.0cm™!, and L = 130 cm.
Solid curves, orbits on branch C; dashed curves,
orbits on branch A. For high enhancement values,
such as on the §, = 1.0 branch A example, the numeri-
cal precision required to compute accurate results
suggests that the phenomenon is very sensitive to the
system parameters.

deserve careful study. However, to the extent
that these effects are negligible, our theory
shows that provision of a strong uniform axial
magnetic field can allew significant small-signal
gain enhancement, and significant reduction in the
required transverse magnetic field strength in a
FEL, without undue compromise in operating fre-
quency below that given by the idealized upshift
value 2y%kcC.

This work was supported in part by the U, S.
Office of Naval Research and in part by the U, S,
Air Force Office of Scientific Research.
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Electron beam dynamics in combined guide and pump
magnetic fields for free electron laser applications

L. Friedland

Department of Computer Science, Yale University, New Haven, Connecticut 06520
(Recetved 13 December 1979; accepted 21 August 1980)

The propagation of a cold relativistic electron beam in a free eiectron laser with an axial guide magnetic field
is considered. The possibility of several steady-state helical trajectories for the electrons is shown, and the
stability against perturbations and accessibility of such steady states is considered. Necessary and sufficient
conditions for the stability are denived and indicate the importance of the transition region at the entrance of
the laser. Possible modes of operation of the laser in different steady-state regimes are suggested and

illustrated by numericai examples.

. INTRODUCTION

The propagation of a relativistic electron beam in
transverse periodic magnetic structures has been stu-
died extensively in recent years. These studies were
stimulated py the first experimentally successful free
electron laser! which confirmed the theoretically pre-
dicted? possibility of using the energy stored in the
relativistic beam as a source of short wavelength co-
herent radiation.

The most frequently used periodic magnetic pump field
in a free electron laser is the transverse field produced
on the axis of a double helical current winding with equal
and opposite currents in each helix (a device usually
referred to as a magnetic wiggler). The unperturbed
motion of the electrons of the beam in the wiggler is
quite simple. The reason for simplicity is that the
magnetic field on the axis of a wiggler can be approxi-
mately described by a transverse vector potential A (z),
depending only on the distance z along the axis. There-
fore, the canonical transverse momentum P, =ymv
- (e/c)A, of an electron is a constant of motion,® which
with the conservation of energy ¥ =[1 - (v,/¢)?
= (v./cPlY3=const, uniquely defines the perpendicular
and parallel components v, and v, of the velocity of the
electrons in the beam, for a given assignment of A (z).
It can now be easily shown* that the electrons in a mag-
netic wiggler have helical trajectories with the same
period as that of the wiggler. This simple model of the
motion has been exploited in many theoretical studies,
describing the operation and parametric behavior of the
free electron laser.®

In all experiments, however, there is also an axial
guide magnetic field.!*®»” This, of course, increases
the number of parameters characterizing the free elec~
tron laser, but at the same time introduces greater
complexity into the theory. The vector potential is now
dependent on x and y and the perpendicular canonical
momentum P, is no longer a constant of motion; as a
result, in general, no simple analytic solution for the
electron trajectories can be found. Although so called
“steady-state’” helical trajectories with the same period
as that of the wiggler and constant values of |v,| and
V.| are allowed by the system, they cannot be obtained
with arbitrary inlet conditions in the electron beam.
Nevertheless, these are the trajectories usually used in
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the theory,*'® without studying the problem of how the
steady-state situation can be achieved. An additional
complication with the presence of an axial magnetic
field is that, as will be shown in Sec. I of this paper,

in general, there exist several possible steady-state
trajectories for the same values of the axial field and
wiggler parameters, and the question arises as to which
of these states is accessible with given inlet conditions
of the electron beam. Thus, in the presence of an ax-
ial guide field the initial conditions and the structure

of the transition region at the entrance of the free elec-
tron laser may be of crucial importance in regard to
the possible modes of operation of the device. These
factors become even more important if the 1dea of re-
cycling® is applied, and the electrcns are forced to pass
the transition region many times.

This paper presents a study of these important ques-
tions. In Sec. lI, we derive the possible steady states
in the homogeneous part of a free electron laser and
study the stability of these states to perturbations of
electron velocities. The transition region is included
in the theory in Sec. IIl, where the possible ways of
operating a free electron laser in different steady states
are suggested and illustrated by numerical examples.

i1, EQUATIONS OF MOTION AND STABILITY

Consider a cold relativistic electron beam moving in
a magnetic field of the form

B=5B(z)e,+ VXA, 1)
where )
A=-A(2)[e,coso(2) +e sina(z)], (2)
and
o= ‘k (z')dz’. 3
j; 0 a (

For A and &, indepenaent of z, the vector potential (2)
describes the field on the axis of an infinite magnetic
wiggler, where, as is well-known'?

A < I{pk, K,(pk,) + K, (pky)] s (¥

where [ is the current in the wiggler, p is its radius,
ky=2m/X,, A, is the pitch of the winding of the wiggler,
and A, , are the modified Bessel functions of the second
kind. By using the more general form (2) for the vector
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potential, we have in mind primarily the possibility of
slow variations of the wiggler parameters p and %, with
2, and assume that in this case the magnitude {(2) in
(2) can be approximated by expression (4), where p and
k, correspond to the values of these parameters in the
nonuniform wiggler at point z.

Although the magnetic field represented by the poten-
tial (2) does not satisfy vxB=0, it gives a good ap-
proximation of the exact curl-free field on an infinite
wiggler at small distances » from its axis. Indeed, as
was shown in Ref. 4, the relative deviation of the trans-
verse component of the field from that described by (2)
is of the order of (k,r)*. Accordingly, if the beam ra-
dius [ is such that (¢ /)*<< 1, the actual transverse field
can be well represented by Eq. (2). The axial compon-
ent of the field of a wiggler near the axis grows® as
kyr; it can be neglected, however, in the presence of
a strong axial guide field. We will also limit ourselves
to low current beams so that the influence of the self-
space charge on the beam can be neglected. We thus
require that the transverse electrostatic field be much
smaller than v,B,/c =v,k,A/c, or, assuming axial sym-
metry of the beam, w?r << 2¢&,Av,/mc, where w, is the
plasma frequency. If, for example, r=0.3 cm, B=500
G, and v, >~c, the maximum current density allowed by
the model will be approximately 250 A/ecm?. The small
signal gain in a iree electron laser at these conditions,
however, may be substantial,!! so that the results of the

present work could be important in current experiments.

We now consider the momentum equation for the elec-
trons of the beam

d vy £

E(yv)—-mcva, (5
where

y={1- ¥/ c®]2. (6)
Let

e (z)=-e sinp +e cosd,
e,(z)=—e cos¢ - e sing, (M
e,(2)=e,.
Then, the cononical model vector potential is
A=A(2)e,, : (@)
and
B=§(z)e3-%el - kyAe, . (9)

On expressing the velocity v in terms of the orthogonal
vectors e, e,, and e, and using

de de,
E‘=k0y3e2; Ft-=-kotae,, (10

cne can rewrite (5) as

dv e - -
Yap " YRotata = g (1B Hhovad)
dv. e( - dfi)
a5 WO N , a4
Yat 7k°L‘L’+mc nB dz ]’ an
dv, e N dz’i)
at;_ € (p, A-..%2).
Yat “me (k"L’A Y274z
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On using normalized velocities «, =v,c and “time” 7
=ct and defining £(z) =edA/mc? and @ =eB,/mc?, one can
write (11) in the form

. AN

w, =n, ().eouz,-;)——‘;—u3 ) (12)

. Q\ 1 d¢ “

u, =—ul(k0u,-7>+; T2l (13)
k& 1d¢

§. =—22 - —

Uy y u, y 4z 1, . (14)

First consider the homogeneous case, where @ =Q,
=const, k,=const, and { =¢{,=const. [n this case, Eqs.
(12)-(14) have a particular solution

u,,=0, uy,=const,

and

R TINLY
=_"obqlag’Y
20 o= U/ (13)

which with the conservation of energy
1,¥=1-18,-1, (16)

defines the values of u,, and u,,. The question arises as
to how this steady-state solution can be achieved. One
can answer this question only by considering the transi-
tion region of the wiggler, where £ and £, may depend
on z. Here, one would expect that for initial conditions
in the beam u, =1, =0, when the vector potential { grows
slowly enough with 2z, the velocities u, and 1, would
gradually approach their steady-state values 1,, and

i3, ard at the same time «, remains zero. It can be
shown, however, that, in general, this cannot be the
case. In fact, one gets from (13) that if «,(z) =0,

RN o S A
uz-_ydzu3 T (112-7)-0, 1mn

and therefore u, =£/y, which, on using (12), requires
that Q(z)=0. Thus, in the presence of an axial magnetic
field and for the initial conditions on u considered here,
u, cannot remain zero in the transition region. The
maximum that can be expected is that the component u,
in the transition region remains small in comparison
with u, and «,. When this is the case, and, in addition,
u, remains small as the beam propagates in the homo-
geneous part of the wiggler we define the beam to be
stable and now proceed to the study of this special kind
of stabi'ity.

First, consider the homogeneous region of the device
and in this region let

w1 (7Y =00 (7)), 1,(T) =1+ 10, (T, 13 (T) =gy +204(T), (18)

where 1, and u,; are given by (15) and (16), and i (1)
are small perturbations to the steady-state solution.
Then, on linearizing Eqs. (12)~(14) one gets

W, =aw, +bw,, a9

w, =-aw, , (200

w,=cw,, (21)
where
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Q k.t u
=k - =20 _u, 22
s AV Uy (22)
Roko 8 g
b=k g+ b1 i , 23
otz Y ¥ kg (23)
¢ =hyly/y - (24)

Equation (19) then gives
ib, =aw, +bit, =~ (a* - bc)w, . (25)

Thus, the necessary condition for the stability of the
electron beam is

a?-bc>0, (26)
or
Q (Y
—_— <1.
kogo(“w) @

Further study of the stability problem must involve a
knowledge of u,, and u,,. Let us combine Egs. (15) and
(16); there results

Y 2 1
1““§°‘(§) GV P (28)

This equation can be rewritten in the form

F=F,-F,=0, (29)

where
1-1/¥

F F—_—, 30)

T, (
and

Y
PN 7% 2 31)

: (U= Q7P

Assuming (§,/¥)?<1-1/9* for ¥ large enough, the func-
tions F, and F, have the general form shown in Fig. 1
for various values of Q. It can be seen from Fig. 1(a)
that for 2 =0, there are two solutions for u,,, corres-
ponding to different directions of propagation of the

{ L
1 vz I 0 vy, 1 uze
(d) i 8228,
i
4
'

s

1 s
-1 0 vy, vy 1 uy 0 vy, 1 vy

FIG. 1. Schematic of the functions F; and F,, defining various
possible steady-state solutions for u ;.
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FIG. 2. The real positive branches of 3, vs the cyclotron
frequency Q, characterizing the guide magnetic field.

electron beam. In the presence of a weak axial magne-
tic field, there exist two additional solutions for 1, ad-
jacent to the resonance velocity u,, =Q/k,¥, as shown in
Fig. 1(b). If one continues to increase §, a situation is
reached, where again there remain only two real solu-
tions for u,, [Figs. 1(c), (d)]. The diagram, where all
possible real positive branches of «,, are presented as
a function of 2, is given in Fig. 2 for a sample case In
which y=1.5687, k,=1.5708 cm™, and £,=0.3873.

Let us now find the frequency Q. at which the roots 2
and 3 on Fig. 2 become complex. This transition cor-
responds to the point A on the figure. One can find Q2
by observing that the function Fin Eq. (29) has only one
bounded maximum at the point «}, such that F’'(«}) =0,
or

PR 1
Uy _ako.r s (32)
where
& /7)2)”’
2] - 20
a=1 (1_1/72 . (33)

It is now clear that when F has four real roots, they
are contained in the following intervals: [-1,0], [0,u«,,],
(#5,,u3], [uF,+1]. On the ends of these intervals the
function F changes its sign, which makes it easy to find
the four roots numerically. It is also clear that the
roots in the last two intervals become complex, when
F(u3)=0. Simple algebra then leads to the following ex-
pression for Q_:

1 1/2
Q°,=koya“2(1-?> : (34)

Considering our sample case shown in Fig. 2, Eq. (34)
gives the value Q.. =0.763 rad cm.

We now return to the question of stability. It is clear
that inequality (27) (which is the necessary condition for
the stability) is satisfied for branch 4 in Fig. 2, since,
according to (15), u,, is negative on this branch. Simple
analysis also shows that branch 2 is stable, since the
left-hand side of (27) on this branch reaches its maxi-
mum value of 1 only at 2 =Q_; branch 3, in contrast,
is always unstable.
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I1it. TRANSITION REGION

The inequality (27) is a necessary condition for sta-
bility of the electron beam in the homogeneous part of
free electron laser. This condition becomes sufficient
if the electron beam enters the homogeneous region with
small enough component u, in its velocity. We now pro-
ceed to the study of the transition region, where as will
be shown, special experimental steps must be taken in
order to get a stable electron beam, corresponding to
various branches on the diagram on Fig. 2. Let us as-
sume that the vector potential ¢ in the transition region
is a slowly growing function of z. Experimentally, this
would be the case, for example, if one gradually de-
creases the radius p of the wiggler, or increases the
pitch length A, =2n1/k, at the end of the device as can be
seen from Eq. (4). Following the ideas used in the pre-
vious section, one can find approximate solutions of
(12)-(14) by using expansions (18), where u,, and u,,
are now functions of z and correspond to the components
of the velocity in the homogeneous case with param-
eters such as those at the point 2z in the transition re-
gion. Then, similar to (19)—(21) one has

, =aw, +bw,, (35)
0, ==a10, +fuy, , (36)
Wy =CW, — flyg (37

where a, b, and ¢ are given by (22)-(24) and

=14t

f—y s (38)

Taking the time derivative of Eq. (35) and assuming that

- the coefficients g and b are slowly varying functions of

z, one gets the following equation
iy =@, + bib, + dw, + bw, = atb, + bib,
=a(@® - bohw, +f(auy, = buty,) (39)
or, on using (22)-(24)

i, == w, +g, (40)
where
w=a®-bc, (41)
and
g= 12 %ngz/, (42)
(1]

Assuming that u is a slowly varying function of T one
can approximate the solution of the homogeneous equa-
tion

o, =-utw,, (43)
by the WKB solution
w,(7) = pt3[C, cosd(T) +C, sing(T)], (44)
where
T
¥ =[ u(r)dr . (45)
(+]

Then, it can be easily shown, using the method of varia-
tion of constants in (44), that the solution of the inhomo-
geneous equation (40), with the initial conditions w, |,
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=w,|,=0, can be expressed as

1 v g(.rl)
#1/2(7) A “l/Z(TI)

Thus, if the vector potential £ grows slowly in the tran-
sition region (the function =1,y df/dzis small enough),
one expects the electron beam to enter the homogeneous
part of the wiggler with 2 small magnitude of w,, which
is sufficient for the stability of the beam in this region
if the inequality (27) is satisfied.

w (1) = sin{y(r) = (v} ]d1" . (46)

In such an adiabatic case, one can also find the tra-
jectories of the electrons passing the transition region.
Expressing the radius vector r of the electrons in the
beam in terms of the unit vectors e, e,, and e, [see
Eq. (7)], one has

r=r.e, +7,e,+ze,, (47)
which on differentiation with respect to 1 gives

F =7, - kv, e, + (7, +hu,r e, + e, (48)
and therefore the trajectories are described by

Pymu vhoury, ¥y =iy = ko, (49

This system of equations can be solved in the following
way: Let

R=r +ir,, U=u, +in,. (50)

Then, on multiplying the second equation in (49) by i and
adding it to the first equation, one gets

R=U-iku,R. (51)
if one splits R into two parts

R=R,+R,, (52)
where

iRy=U/kgu,, (53)

and R, is assumed to be small, then on linearization in
Eq. (51),

R, ==R, - iku,R, . (54)

The solution of this equation for R, is given by
T
Ry== [ Ry exp(-i{elz(M]- ole(rar, (59
]

where ¢ is defined by (3). Thus, if the velocities u,,
u,, and u, are slowly varying functions in the transition
region, R, remains small along the trajectories and
R~R,, or

~ o H ()
r,(2)~Re(R,) m , (56)
1,0(2)

7(2) = Im(Ro) > = = @

< r (), (57
and therefore the electrons in this case are moving on

helical orbits with adiabatically changing radius »,, and
the pitch period as that of the wiggler.

Thus, we have shown that, in principle, one can ob-
tain a stable electron beam in a free electron laser if
the variations of the parameters of the wiggler in the
transition region are slow enough. This conclusion,
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FIG. 3. The real positive branches of u3o vs £. (a) 2
=0.6 rad/cm; () R=1.0 rad/cm; (c) £=4.0 rad/cm.

however, is based on the approximate solution (46) for
w, and one has to check whether all the assumptions,
used in the derivation of this solution, are correct. One
of these assumptions was the slowness of variation of
the coefficients a and b in (35) as the beam propagates
thrcugh the transition region. Let us show now that, in
general, this is not guaranteed even if § varies slowly.
The reason is that the real solutions for u,, and u,,
which are used in the definitions of g and b, do not al-
ways behave continuously. We demonstrate such a pos-
sibility in Fig. 3. In this figure, one can see the dia-
grams of the possible real positive solutions for «,,, ob-
tained in a fashion similar to the diagram in Fig. 2, but
for constant values of Q and varying £. Our sample case
parameters ¥ =1.587 and k,=1.5708 were again used in
these graphs. As mentioned previously, the variation
of £ with constant value of £, can be experimentally ob-
tained by varying the radius of the wiggler winding in
the transition region, holding the pitch length A, =27/k,,
constant. In Figs. 3(a,b), we show two cases with the
values of Q higher and lower than the critical value Q.
in the homogeneous region [Q,, is detined by Eq. (34),
and in our sample case is equal to 0.763 rad/cm]. For
Q<Q,,, as § increases in the transition region, one
follows the path AB in Fig. 3(a) and passes continuously
to the homogeneous region corresponding to the point B
on the diagram (at this point ¢ =£,). The beam is stable
in this case. In contrast, if Q is larger than Q_,, one
arrives in the transition region at the point D [see Fig.
3(b)], where the branches 2 and 3 of «,, become complex
and the homogeneous region can be only reached on the
diagram by the discontinuous path DEF. The jump DE
in u,, leads to the fast variation on the right-hand side
of Eq. (12), which cannot remain small anymore, and

u, grows in amplitude, leading to the instability of the
beam. For sufficiently large values of Q, one can again
return to the stable regime. In fact, if u,, =Q/vk,>1,
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FIG. 4. The 2 dependence of various components of the elecr '
tron velocities for Q=0.74 rad/cm.

the only possible real branch of u,, is branch 4 (see Fig.
2). This situation is illustrated in Fig. 3(c). The beam

follows a continuous path GH in the transition region in

this case and remains stable.

In addition to these qualitative considerations, we il-
lustrate the creation of the instability in the beam in
Figs. 4 and 5, where the numerical solutions of Eqgs.
(12)-(14) for u, are presented for our sample case for
two values of 2 =0.74 and 0.77 rad, cm (recall that
=0.763 rad/cm). We assumed in these calculations the
following z dependence of the radius p of the wiggler
winding in the transition region;

zz 0,

Po,
p={[)°*(z’zo)2» Z(O, (38)

where p,=2.5 cm and 2,=8 cm. The sudden transition
to the unstable behavior when one goes from Fig. 4 to
Fig. 5, where all the u,'s change rapidly (u, even be-

comes negative on the parts of the trajectory) is ob-
vious.

Thus, in conclusion, if the vector potential £ varies

(a) uy
Tl
0

0.2

-0.2
-0.4
-0.6
08k

(b) U

0.8
0.6
0.4
0.2

=077 rad/cm

L

.
-10 1 20
-0.2

-0.4[:
0.6

-0.8

z {em)

T

FIG. 5. The z dependence of »y and uy for Q- 0.77 rad/cm.
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slowly in the transition region, one can get a stable
electron beam for Q<Q,, and as the parameters of the
wiggler vary adiabatically, the beam follows branch

2 of the possible solutions for u,, on Fig. 2. One can
also have a stable situation for large axial magnetic
fields, when branch 4 remains the only possible one for
operation. One has to remember, however, that the
necessary condition for the last possibility is that in
the transition region u; =Q/k,y >1. This condition can
easily be satisfied when the growth of ¢ in the transition
region is due to the variation of the radius p of the wig-
gler, when k,=const. If in contrast, p=const and %, is
increasing as one approaches the end of the wiggler,
larger values of the axial magnetic field are required in
order to operate the device on branch 4.

Let us finally consider the question of whether it is
possible with the initial conditions on the beam assumed
here (namely, u,|,=u,|,=0) to get a stable electron
beam at a larger region of branch 4, especially for
u,, < 1. As mentioned before, the necessary condition
(27) for stability is always satisfied on this branch,
which makes it more attractive. The perpendicular
component of the velocity on branch 4 can also become
very large, which is again very important for possible
electromagnetic wave amplification in the 2 direction.

The experimental scheme, which allows one to oper-
ate a free electron laser on branch 4 is shown in Fig. 6.
We are exploiting the stability of the beam for large
values of Q [as demonstrated in Fig. 3(c)] and are ap-
plying a strong axial magnetic field in the transition re-
gion of the wiggler. Then, after passing this region the
electrons will enter the homogeneous part of the wig-
gler, being on the upper part of branch 4 in Fig. 2. Now
in the homogeneous region, where £ ={ =const, one can
gradually reduce the axial magnetic field. The beam
will then follow the continuous branch 4 and one can
easily reach region Q ~Q_., which was unstable with the
constant axial magnetic field. We demonstrate this
possibility in Fig. 7, where the solutions of Egs. (12)-
(14) are shown for exactly the same final Q and §; as in
the unstable case in Fig. 5. The same variation (58)
for p was used in the computations. The cyclotron fre-

eal o
A 8 C
2
‘0'2
3 €o
z

FIG. 6. Possible configuration of the pump and guide flelds for
operating on branch 4 of the steady-state regimes. A-tran-
sition region for {; B-transition region for Q; C~homogenous
part of the device.
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FIG. 7. The z dependence of the electron velocities in oper-
ating on branch4 with varying guide magnetic field. Q
= 4 rad/cm, 9= 0.77 rad/cm.

quency was assumed to have the form
Q, zs2L,
a= { @, - Qe Py 252l
where @, =4 rad/cm, Q,=0.7T rad/cm, and L=4cm. It
can be seen from Fig. 7 that the beam remains stable
and corresponds to branch 4 with negative and larger

values of u,, than in Fig. 4, which corresponds to branch
2.

(59)

IV. CONCLUSIONS

(i) In operating a free electron laser with an axial
magnetic field, different steady-state regimes of the
helical motion of the electrons in the homogeneous part
of the wiggler must be considered.

{ii) The necessary condition for the stability of these
steady-state regimes is given by the inequality (27).

(iii) The transition region of a free electron laser
plays an important role in determining the sufficient
conditions for stability and in achieving the different
modes of operation of a free electron laser for a given
set of parameters of the homogeneous part of the de-
vice.

(iv) The following two models have been analyzed for
operating a free electron laser in different steady-state
regimes:

(a) The first is characterized by a constant axial mag-
netic field and gradual increase in the vector potential
in the transition region. The stability of this scheme is
limited by a critical value of the axial field given by
Eq. (34). The value of the perpendicular component of
the velocity is also limited in this steady-state regime.

(b) The second setup uses a strong axial magnetic field
in the transition region. The field is then adiabatically
decreased in the homogeneous part of the wiggler. This
regime is always stable and can operate with any value
of the axial magnetic field in the homogeneous region.
The only limitation is imposed by the increasing radius
of the helical trajectories of the electrons in the beam
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as the perpendicular component of the velocities grows
with a decrease in the axial guide field.
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The linearized theory of a free-electron-laser amplifier consisting of a relativistic electron beam transported along
the axis of a helical wiggler in the presence of an axial guide field is solved exactly. With suitable re-identification of
parameters, the theory also applies to the case where the wiggler is replaced by a circularly polarized subluminous
radio-frequency pump. The dispersion relation is derived and numencal exampies of soiutions are presented. These
indicate (a) that the use of an axial field permits operation of a laser of given high frequency and unduiatory
transverse velocity of the unperturbed electron beam at lower values of the pump field, {b) that the gain can be
enhanced by approaching the condition of resonance between the effective frequency of the pump and the cyclotron
frequency, and (c) that the breadth in frequency of the region corresponding to spatially exponentially growing

operation can be much extended.

1. INTRODUCTION

The theory of a free-electron laser (FEL), con-
sisting of a relativistic electron beam transported
along the axis of a helical pump magnetic field,
has been given by Bernstein and Hirshfield.! Their
analysis was valid for arbitrary pump strength but
weak rf fields, since it involved linearization in
the amplitudes of the high-frequency quantities.
Here we present the extension of that work to the
case where, in addition, there is an axial magnetic
field, conventionally present for beam collimation.
It is also shown that with a suitable reinterpreta-
tion of parameters, the same theory applies when
the magnetostatic pump is replaced by a circularly
polarized subluminous rf pump. The axial field is
shown to yield the additional benefits of permitting
the use of weaker pumps, providing enhanced gain
and yielding broader domains of spacial instability.
This is discussed in detail in Sec. VI.

The work proceeds as follows. The general
mathematical description is developed in Sec. O
where the continuity and momentum equations de-
scribing the relativistic beam, and those govern-
ing the electromagnetic fields are presented.
Section III describes the properties of a helical
pump magnetostatic field, and Sec. IV those of a
circularly polarized subluminous rf pump. The
linearized equations governing the high-frequency
fields are derived in Sec. V. Section VI is devoted
to a brief discussion of the relation of this work to
its predecessors, to a description of the numerical
examples worked out, and conclusions concerning
the effects of the axial field.

1. GENERAL MATHEMATICAL DESCRIPTION

Consider a cold relativistic electron beam de-
scribed by the continuity equation

aN
# +9.(N¥)=0 (1)
and the momentum equation
3 . - - . B
(a—t+v-v)(myv)—-e(l§+vx?), (2)

where m is the rest mass of the electron, and
y=(1-v¥/)" 2 (3)

If one forms the scalar product of (2) with ¥ and
uses (3) to express ¢ in terms of 3, there results
the energy equation
3 . o = .
(3? +V-V>mcw'=—eE-v. 4)

Let B be a constant. It is convenient to introduce
the electromagnetic potential A and ¢ via

B=B3 +VxA, {5)
- 3 (A
E=z=Vd - a7 (F) . (6)

Then with Q =el§/mc one can write (2) in the form

<% +V. E’) (my¥)

_(g)(-cw 2B e x (v xRy e Bix s,)

=mQe, % V+(%) (chb +% +7.VA-(TA)- V) (7

or on rearranging terms

3 . o=\ . ef\)

<37*"'V)(”-m
=Qé, XV+ —C->[CV(> (VA)-¥] (8)
=Qe, (mc - v).

It follows from the Maxwell equations
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cVxB= 4rJ+%, (9)

v.E =412, (10)
on employing (5) and (6), that
- 22
R T ({25

v2¢+4wz=-c'v~a—‘:. (12)

Thus if we adopt the canonical model of FEL the-
ory, viz,
A=A,(z,0)8,+A (2, )8, , (13)
®=9(z,t) (14)

(note that the vector potential is written in the
Coulomb gauge) and assume that the only charged
particles present are electrons, whence = =-Ne
and J=~Ne¥, then (11) and (12) yield

A 9% (41rNe) -

3z -c Y- - te:'v) ’ (15)
32

F =4nNe . (16)

II1. MAGNETOSTATIC PUMP

Consider the case of a free-electron laser in
which the pump magnetostatic field is generated
by helical windings and the self-fields of the elec-
tron beam are negligible. Then in cylindrical co-
ordinates p,6,z the vacuum magnetic scalar po-
tential x will be helically invariant, viz.

X=X(p’9—koz), (17)

where 27/k, is the pitch, and will satisfy Laplace’s
equation

w3 o (P2) + (B )30 as)

The general solution of (18), regular at p=0, on
separation of variables is readily shown to be

=-Bz+ 3" Xl (mkop) cosim(s ~ kyz)+x ],
(19)

where the x,, and ) are constants determined by
the details of the helical windings. Recall that the
Bessel function

1,(6)= Z Lo (20)

st(m+s)

Thus if a is the radius of the windings and p<« 27/
k,, the potential is well approximated by the term
with m =1 alone, with I, approximated by the lead-
ing term in the series. The resulting expression
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for the associated magnetic field is, on choosing
the coordinate system so that A\, =0 and bkyy,
=-Bm

B =-Vx=B88,+B,(E,cosk,z +8&, sinkyz) .  (21)

The nonconstant part of (21) can be written as the
curl of the vector potential

A ==(B,/ky)(8, coskyz + &, Sinkyz) . (22)

Expression (22), valid only near the axis, is the
form conventionally taken for the magnetostatic
pump field. A corresponding solution for the ve-
locity and density can be obtained from (1) and (8)
by introducing the basis vectors

€, ==&, sinkyz + &, cosk,z , (23)
€,=-8,coskyz - 8, 8inkyz , (24)
e, =¢,, (25)
when on writing
A =A‘EL+A232+A3§3 (26)
it follows that
2A (84, - {04 -
rri ( . _k°A’)e‘+\Tzz + koA,) e,
3A
Zag
+ 2z 03 27
Thus (1) and (8) imply
v,9 NBL’
(g +22) =20, (28)
3 3 _eq; €A,
EE+ 3z/\ 7Y " e = kgl YV, ~ =-fy,,
(29)
2 u8 e e4) .
(8—t+ v (yv,— p + kool vy, ~ =Qv,,
(30)
3 v,9
g bt
(at+ az) brey)
e cad 8A aA
f e—V— =, —d o
(mc)(az U5 v28 kva1+kovA)
(31)

Now on combining (22) and (25) one can write
B, =(mc?/e)tge, , (32)

where §, is a dimensionless constant. It is then
readily seen that if also ¢,=0, corresponding to
E,==Y%,=0, then a solution is given by

V,=ue,+10e,, (33)
N,=const, (34)

where u =const and w =const, satisfy (27)-(30)
provided that consequent to (29)

w=kocut(kpy,-2)7: (35)

i o st
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where where
= 2 -2 . By_ B, mc
Yo=[1= (¥ +u?)/c?] (36) Al=8=_22 0 ¢, (49)
kS kg e

This solution and its experimental accessibility
has been analyzed in detail by Friedland.’

IV. RADIO-FREQUENCY PUMP

The solution given by (32), (33), and (34) with
E, =0 can also be adapted to describe the case of
a free-electron laser with an electromagnetic
pump which in the laboratory frame has a phase
velocity less than the speed of light. One then
views the solution as given in the frame where the
pump wave is at rest. Equation (15) then requires,
on using (32) and (33), that

=kt =wiw/c, (37
which on using (35) can be written
~koC = whulkguy, = 2), (38)

where the plasma frequency, defined using the
rest mass, is

w, = (47N e /m}'? (39)

Let v, be the speed of the laboratory frame as
seen from the wave frame. Distinguish quantities
in the laboratory frame by a prime. Then on Lo-
rentz transformation z/=7(z = vot), ¢ == v,2’
), and

ALET X 5N (40)

ky=k,7 , (41)
where

F=(1-v3/c3)2. (42)
Clearly

vo=—w'/kg, (43)

is the negative of the phase velocity of the wave.
Moreover,

B =f33, +B}[e, cos(kliz’ - w't’)+ 8, sin(kiz’ = w't')],

(44)
where
B,=7B, (45)
and
El=—(w/k)c)8, x B, (46)

Evidently the wave is transverse and circularly
polarized. The associated potentials are

®=0, (47
A =Aj[3, coslkyz’ - w't')+3, sin(klz’ = w't")],
(48)

Clearly A is a Lorentz invariant. Also

y!=ygr{l =vu/c?y, (50)

N'=NT(1-vu/), (51)
-l

W (52)
w/y

i ey 53)

The inverse transformations to (50)~(53) can be
gotten by interchanging primed and unprimed vari-
ables and changing the sign of v,.

The counterpart of (35) is now

w'=cky(kiu’ = v ilkiu - w) -], (54)

Equation (38) is carried into
(w? = k2c%) = Wk’ — W)y (ki = w) = Q] .
(55)

Equation (55) can be viewed as the dispersion re-
lation for the pump electromagnetic field, but it
is to be noted that the steady-state theory is not
restricted to weak pump fields and a linearized
thecry.

V. STABILITY ANALYSIS

Let us work in the laboratory frame for the case
of the magnetostatic pump and in the wave frame
for the case of the radio-frequency pump. The
stability analysis is then common. Let

A=A, -Ref(mc?/e)[£,(2)8,(2) + &,(2)8,(2) Je"ive} |

(56)

v=7,+Re[V(z)ei¢¢], (57)
& =0+Re[(mc?/e)w/kc)E,eiv"], (58)
¥ =yo,+Re(L e ivf) (59)
N=N,+Re(N,e v, (60)
Then (29) and (30) yield on linearization

, d
(-zuﬁuz)(yon +8) = ku(Tw+y oV, + cEy)

- kovg(yau‘ - C‘Sq} = -QVZ (61)
<-iw+3—:)(l‘u'+~,ol’2+ &)+ kauly Vi +c8)=QV, .

Rather than use (31) it is convenient to employ the
linearized version of (4) which yields

ud ( wu YdE, fwwt
) — _— ) 32 .
( w+dz)r ke ) dz "¢ (62)
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Linearization of (1) gives and
- 2 2]-1
(_iw...;_:)Nl_’, (‘})(‘Vova) =0 R (63) T ’(Q/Yo)[(ku - QJ) - (kou - Q/’)’o) ] . (80)
2 The components of 6 are
while linearization of (3) implies 6, =1~ 2+ )/ Wyt
Thd={uV,+wV,)/c. (64) 0 =6 =0
X . . 137731 ’
Equations (15) and (16) on using (27) yield 8, = = by, = <2ich/o?,
dﬂ
TR L P RS (65) 6 =1+ 1)/ (81)
i W2 Now (Bl P 1+ (/WA = wPWhou = w)2],
._l_
Tz} Koka+ 2k dz +7j (#)( Ng ) , (66) B,y =0, = =(wd/yo)(bu = W) 2(w/w)k - wu/c?),
wd?, W N 0,5 =1 = (W3 /ro )by = W)*(1 =u?/c%).
ke -E";h TV-: ‘ (67

Note that Eqs. (60)-(67) are a system of eight lin-
ear ordinary differential equations with constant
coefficients for the eight quantities V,, V,, V,, T,
N,, &, &, and §,. Thus we may seek solutions
where all these scalars vary with z as e**, If we
write

E =Reli(2)e'*!], (68)
then it follows from (6) that
3=—i(mcw/e)t. {69)

Equations (60) through (67) then imply

ik = )y oV, + ct) = (Bt = /v Yy V,+ €y + Tw)
=(R/yo)cls +(R/y ) Tw+kVylyow — ¢&),  (70)

(gt = /7o)l oV, + €51 |
+i(ku = w)y,V,+ g+ Tw)==(Qfy,)ct, , (1)

T=03/EANuV,+wV,), (74)
(1 - (K2 + 2) /Pt = (2ikykc?/uP)E,

=—(wd/?)V,/c), (75)
(2ikokc? /uP)E, +[1 - (2 + FP) /P E,

=< (/PN (V, /) + (w/c)N/N,) , (76)

N /Ng==(kcw/u)E; . ()

It is convenient to express I', N,, V,, V,, and V,
in terms of £, &,, and §;. The result can be rep-
resented in the form

e E=0, (78)
where the dielectric tensor
€=8+(wlr /vow’)g:_ (19)

TS MraSE L g g AT AN Gt e

The elements of § are

Yy =hott ~ Ry, ,

w?
Py = —ilku - w)(1+-E,- ku“: - ),
w EokgCw  hu~-w
g = =ik — w)(cz - w? kw—ﬁo)'
[ k(u? + w?)
”""( u "")’ (82)

w? o
A et o)

R(u? + w?) kot = Q/y
523=( a0 Oku—wo

cw
(_LT Ri—w f; ou—Q?yo)
oy =iww/u,
ww kou-ﬂ/*/&(‘“.w2 w )

Y= T hicw Fhu-w

b, =2 kou Q/yg uw _w | Eokcw ku—w)
8" u (?ku w Wi ku=QFA,/

In the limit 2 ~0, T vanishes and € reduces to ¢,
which apart from notation is the form found by
Bernstein and Hirshfield.!

V1. THE DISPERSION RELATION AND NUMERICAL
EXAMPLES

In order that (78) have nontrivial solutions it is
necessary that the determinant

D=dete =0. (83)

This yields an eighth-order polynomial equation
for k. In practice, for the cases of interest w3}

<« «?® and u~c, and two of the roots aze such that
w/k=-c, That is, they propagate in the negative-
2 direction counter to the beam and are substanti-
ally unaffected by the tenuous beam. The remain-
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ing six roots correspond to waves which propagate
along the beam, When Q -0 the two of these which
can be associated with cyclotron waves in the limit
of no helical pump disappear, and one recovers
the result of Bernstein and Hirshfield.! These fea-
tures will be illustrated later when numerical ex-
amples are discussed.

Now Eqgs. (61)-(67) comprise a tenth-order sys-
tem of linear ordinary differential equations which
require for a unique solution the stipulation of ten
boundary conditions. Since usually there is negli-
gible reflection of waves at the output end of an
FEL amplifier of finite length, two conditions are
the requirement that the amplitudes of the waves
propagating counter to the beam be zero. This
requirement can be most easily dealt with via
solving the system of ordinary differential equa-
tions by means of a Laplace transform in z, as
was done in Ref, 1, instead of the normal mode
analysis. The dispersion relation, of course, de-
termines the poles of the transform in terms of
which the inversion can be readily accomplished.
The resulting solution for 3(z) can be written in
terms 3(0), assuming that all other first-order
quantities are zero at z =0 and involve linear com-
binations of the six modes corresponding to the
six roots with Rek> 0. Since in general these roots
are nondegenerate, but differ by amounts of order
Ak much less than «’c, there will be interference
amongst their contributions to 2(2), which be-
comes evident after a distance of order 27/ak,
This feature has been examined in detail in Ref.

1. We will not pursue it further here, other than
to note that the single particle theory in which one
examines the second-order energy change in a
distance z of an electron moving in the zero- and
first-order electromagnetic field, and identifies
this with the gain in energy of the high frequency
field, is valid only for zAk<1.

We now consider the dispersion relation (83) in
an FEL with guide magnetic field. Because of the
complexity of the dielectric tensor € [see Eq. (79)]
it is convenient to study the dispersion relation by
comparing two FEL’s, identical except that one
has an axial field while the second does not and
thus is characterized by the dispersion relation
D, =det(g)=0, the properties of which are well
understood. We make the comparison between the
two lasers by fixing the parameters of the FEL
without the guide field and adjusting the value of
the pump field parameter §; in the lagser with the
guide field so that the axial velocities u# (and there-
fore also ') in both lasers are identical. This
assures the same Doppler upshift of the frequen-
cies in the lasers. A similar comparison has been
made by Friedland and Hirshfield for the gingle
particle model of FEL.?

T e gy, A VIR g 41T . S PP AP

Let £ be the pump field parameter in the FEL
without the guide field. The unperturbed electron
velocity components are then given by w/c=¢/
and u/c={1~-(1+£)A3]* 2. Therefore, following

Eq. (35), with the guide field

= £0 g
t=(1 -m) . (84)
This equation demonstrates the intrigaing possibil-
ity of reduction of the pump field in an FEL as one
approaches the cyclotron resonance condition 2/,
- kou. Accessibility of the resonance, however,

is not guaranteed, as was shown in the recent
study? of the unperturbed electron beam orbits in
an FEL with the guide field. It was demonstrated
that for given values of v,, k,, &, and & the elec-
trons can possess more than one steady state.

For example, Fig. 1 shows u/c versus Q/c for
k=6 cm™, y,=3, and £,=0,5. For 2>, it is
seen that only one branch exists (branch C). But
when Q< ., two additional branches (4 and B) are
allowed. It was also shown that the necessary con-
dition for orbital stability of the steady-state solu-~
tions against small perturbations is given by the

inequality
W\ 3
&2 (5) <1. (85)

CRySo\ 1

Branch C is always stable. since n'<Q on this
branch. On branches 2 and B, >0, but. as was
shown, only branch A satisfied (85) and thus may
be used in applications. Since the ratio w/u is
kept constant in our comparative study, one can
substitute the expression for £, found from (35)
into (85) and write the stability condition in the
following form:

¥ okt
1+ (w/u)?
valid for branches A and B. In our sample case
(vo=3, B,=6 cm™, and £=0.5) one has Q. /c
=16,18 cm™, and, therefore, according to (84),

Q< = (86)

u/c
1.0

T
>

0.8} c

0.6 t

0.4}

0.2} n‘r/‘
0.0l | IR VUG RS WU DN SR U W G |
o 4 8 12 16 20 24 28
n/:km'l)

FIG. 1. Steady-state normalized axial velocity u /¢
as a function of normalized axial magnetic field 2/c.
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g
[=]
T

-20

FIG. 2. Dispersion function D’ on branch A for the
case v,=3, k=6 cm™~!, and w/c=40 cm™!, The dashed
curve represents the FEL without the guide magnetic
field and £3=0.5. The solid curve is for the FEL with
the guide fleld (2/¢=6.5 cm™!), where smaller values
of ) are used so as to provide the same values of x and
w as for the dashed curve.

£, on branch A4 cannot become less than £,,=1,562
x 1072,

We return now to the study of the dispersion re-
lation (83). The form of the dielectric tensor €
[Eq. (79)] suggests that for values of w, small
enough, the function D will differ significantly
from D, only in the regions where (bu - w)® - (kou
-Q/y,)=0, as a result of the resonance in the
denominator in 7 [see Eq. (80)]. We demonstrate
a typical effect of the axial guide field on the dis-
persion function D in Fig. 2, where the function
D’=D(ku - w)/wy(1 —u?/c®)]* /v, (the full line) is
shown versus n=ck/w for branch A in the sample
case when w/c=40 cm™, «2/c*=0.5 cm™, and
Q/c=6.5 cm™. In the same figure the dashed line
represents the case with no guide field.

It is well known! that the unstable regime in an
FEL without the guide field can be described as a
coupling between the transverse electromagnetic
modes with the dispersion relation n, , =12 cky/w
and the electrostatic beam modes characterized
by ny (=c/utcw,/y,wu. One can see from Fig. 2
that these four roots are only slightly perturbed
by the presence of the axial field. There exist,
however, two additional roots in the neighborhood
of the resonance points n, ,=c/us(ck,/w =Qc/
yuw). If the resonances are widely separated as
in the case of Fig. 2, the onset of the unstable
mode is roughly the same as without the guide
field, namely, as the frequency w increases, the
root n, moves to 1, passing the region n,<n<n,
(since n; = c/u)., The modes couple in this region,

(o)
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-0.02}- / |
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-0.02f- /

J/

FIG. 3. Graphical representation of the dispersion
function on branch A for the case vy =3, k(=6 cm™!,
;3=o.5, w/c =50 cm™!, and increasing values of the
guide field (the solid curves): (a) 2/c=14cm™!, (b)
Q/c=15 cm™!, (¢) Q/c=16 cm~!, The dashed curves
correspond to the FEL without the guide field. Two
pairs of roots of the dispersion relation become com-
plex as the real roots n; and n; are squeezed by the
resonances at ng and ng.

and the roots of the dispersion relation are com-
plex. When w continues to increase, n, becomes
less than n,, the coupling diminishes, and one
again has a stable regime.

New effects may occur when the resonances n,
approach each other. This situation is shown in
Fig. 3, where the full line represents the disper-
sion function on branch A for increasing values of
€. One can see in this example that even for w/c
=50 cm™ in our sample case (all the modes are
stable in this case if 2 =0) it is possible just by
changing Q to squeeze the roots n, , by the reso-
nances 7, , S0 that two pairs of the roots become
complex. For higher frequencies, when again the
FEL without the guide field is stable (n, < n,) one
can also get an unstable regime as is demonstrated
in Fig. 4 for w/c=100 cm™, Our numerical study
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FIG. 4. Graphical representation of the dispersion
function on branch A for the case v, =3, k4=6 cm~?,
§3=0.5, w/c =100 cm™~!. The solid curves: (a) R/c=14
cm™!; ) /c=15 cm=!; (¢) R/c =16 cm~!. The dashed
curves correspond to the FEL without the guide field.

shows that similar behavior is also characteristic
for branch C with the only difference that there is
only one pair of unstable modes in the low and the
high frequency ranges, respectively.

We finally summarize our comparison of the
FEL’s with and without the guide field in Figs. 5
and 6, where the imaginary part of * is shown as
a function of w/c for various values of the axial
field in our sample case (y,=3, k,=6 cm™, &
=0.5, w}/c*=0.5 cm®). Figure 5 is for 0<Q/c
<14.5 cm™ on branch A (the full lines) and 21<Q/c
<28 cm™ on branch C (the dashed lines), The
resonances n, o are relatively wide apart from
each other and formally the instability in this
range of  occurs similarly to the case of the las-
er without the guide field, Nevertheless, the
presence of the guide field increases the instability
on branch A and tends to decrease it on branch C.
In addition, the linewidth of the unstable regime is
seen to be significantly increased at lower fre-
quencies on branch A, Together with this, no in-
stability exists at frequencies higher than those

0.4

o
w
T

o
»
I

tm (k) {cm™)

e
L

0.0
50

w/e (<m")

FIG. 5. Spacial growth rates Im(k) versus w/c on !
branch A (solid curves) and C (dashed curves) for vari-
ous values of ¥/c: (1) /¢ =0, (2) @/c=12 cm™!, (3)
Q/c=14 em~! @) Q/c=14.5 em™!, (5) 2/c=28 cm™!,
(6) Q/c=23 cm™!, (7) ?/c=21 cm~!. For all the cases
¥=3, k¢=6 cm~!, and £)=0.5.

characteristic of the FEL without the guide field.
As one approaches the resonance condition
=yquk, (further increasing  on branch A or de-
creasing it on branch C) a completely different
type of behavior is observed as is shown in Fig. 6
for /¢=15.25 cm™ on branch A (the full line) and
Q/c=18 cm™ on branch ¢ (the dashed line). The
unstable region extends over the entire low-fre-
quency range and there are two different unstable
modes on branch A, as was mentioned previously.
In addition there exist unstable modes in the high-
frequency region, which was totally stable before.
Note that the values of Imk in this high-frequency
regime are only weakly dependent on the frequency
itself.

Thus, in conclusion, we have demonstrated in

o
>
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o
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im (k) (em))
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0.0

120 140

w /c lem™

FIG. 6. Spatial growth rates Im(k) in the sample case
(v9=3, ky=6 cm™!, £0=0.5) versus .:/c in the regime,
where the cyclotron modes couple to the beam modes . ]
(see Figs. 3,4). Branch A (solid curves): Q/c=15.25 '
cm~!, Branch C (dashed curves): 2/c =18 cm~!. The
unstable modes are extended over the low- and high-
frequency regions. There exist two different growth i
constants in this regime on branch A. b
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3 =
our numerical examples that the presence of the =kotty 4.
' guide field in an FEL introduces the following de- (iii) The linewidth of the unstable modes can be
sirable features: widely extended to both low- and high-frequency
(i) One can operate the laser with much lower ranges.

magnitudes of the pump field without sacrificing
the undulatory velocity of the electrons. This al-

lows one to use shorter periods of the wiggler with ACKNOWLEDGMENT
the same currents.,
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ORBIT STABILITY IN FREE ELECTRON LASERS™

P. Avivi, F. Dothan, A. Fruchtman,
A. Ljudmirsky, and J. L. Hirshfield™

Center for Plasma Physics
Hebrew University
Jerusalem, Israel

Helical magnetic wigglers for free electron lasers can pro- i
duce non-nelical electron trajectories iZ a uniform axial
zuide Tagnatic field is imposed. Traidland's necessar

critericn for the existance of halical orbits is reviewed
and snown to apply for non-relativistic electron energies. I
An experiment designed to test this criterion is described i

and results are compared with theory.

Key words: free electron laser, magnetic wiggler, elec-
tron orbits.

Introduction

Considerable effort is currently underway in the anal-
vsis (1), design (2), and construction (3) of free elec-
tron lasers for amplification of infrared and far infra-
red radiacion. A typical device comprises a good quality
electron beam with energy of 10's of MeV which moves
through a periodic static pump magnetic field, termed a
magrnetic wiggler. Radiation propagating along the elec-
tron beam has been shown experimentallv (4) to be ampli-

fied, but the single-pass small-signal gain may be quite
small (7% was reported Zor a 520 cm length at » = 10.6u
in Ref. 4).
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Suggestions for enhancing the small-signal gain by
superposing a uniform axial magnetic upon the wiggler field
have appeared, based upon both single-particle (5,6) and
collective (7) models. The gain enhancement can result
from either increased equilibrium undulatory momentum (5),
or from dynamical resonance between induced electromagnetic
perturbations and the natural oscillations of electrons on
helical orbits (6,7). The increased undulatory momentum
results in a decreased axial momentum, and thus a decreased
Doppler up-shift, i.e. the laser output frequency is shif-

.ted to longer wavelength. Gain enhancement may still be

achieved without this wavelength increase by operating the
device with a reduced wiggler field.

A necessary condition for achievement of the gain en-
hancement is that the equilibrium electron orbits :in the
wiggler be nearly helical. Without the axial guide field
a helical magnetic wiggler produces a helical orbit; this
result follows from the constancy of canonical angular
momentum. But when the axial guide field is present,. the
orbits are generally not helical (8). They can be arranged
to be nearly helical if the entry conditions inteo the
wiggler are suitably tailored, and if the wiggler and guide
field parameters are in a regime of stability, determined
from the orbit parameters (9).

In this paper, we shall review the basis underlying
the criterion for orbit stability, and shall present
results of an experiment designed to test this criterion
quantitatively. ‘ '

Orbit Stability

Here we summarize (8) some- aspects of the dynamics of
charged particles moving in a static magnetic field given

by

B(z) = e, + (éxcoskoz +.éyslnk°z)B*

(1)
e

B, = &,B,

3
Here B, is the magnitude of the uniform axial guide field,
and B. is the magnitude of the transverse helical field
with pitch 2, = 2m/ky. It has been shown (1) that the
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charged particle dynamics in this field are described com-
pactly if a coordinate system with basis vectors (21, 227,
23) is used, rather than the Cartesian system (&g, &y, &5).
The coordinate transformations follow from the definitions
of &, and &3 given in Eq. (1), and by & = éz X é3.

Of course, the field given by Eq. (1) does not satisfy
VvV x B =0; it is however a good approximation to the actual
field near the axis of two identical interspersed helical
conductors carrying currents in opposite directions. The
exact field, and the precise nature of the approximations
leading to Eq. (1) will be discussed in a forthcoming
paper (10). '

For a particle of charge e, rest mass m, and relativ- i
istic-energy factor y, the steady-state solutions of the
equation of motion md(yv)/dt=-ev x B [with B given by
Eq. (1)] are

2

S 2112

]

u

where u = v/c, Q2 = eBy/m, and § = eBi/komc. These compo-
nents correspond to ideal helical trajectories, since up
and uj are constants. However, these steady-state values
can only be approached asymptotically, for an actual wig-
gler, because of coupling between the components in the
transition region at the entrance to the wiggler (8), and
because the form given by Eq. (1) is only an approximation.

The solutions given by Eq. (2) are depicted (for y =
10.0, kg = 6.0 co™}, and § = 1.0) in Fig. 1. For @ > 0,
the equations are single-valued, whilst for @ < Q¢p they
are triple-valued. The critical axial guide field cyclo-
tron frequency ., is given by

1 _ 2 _ .\1/3 _ ,2/3:3/2
g = kOC[(Y 1) £°0 7] . (3)
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Figure 1. Solutions for steady-state axial
momentum uj, as a function of axial magnetic
field, for vy = 10, kg = 6 cm'l, and £ = 1.

For smaller values of £ than that chosen for Fig. 1 the
curves hug more closely the asymptotes uz = (1 - vy i)l
and uy = Q/kgcy. Perturbation theory shows (8) that
branches A and C in Fig. 1 are stable, whilst branch B is
unstable. Thus, if a particle enters a wiggler along a
gradually increasing guide field, it would move on a
stable helical orbit along branch A, but at Q = Q., the
orbit would become unstable and thus severely non-helical.
Examples of non-helical orbits are shown in Ref. 8. 1If

2 = const and the wiggler field increases gradually, a
similar phenomenon occurs at g.,., where

1/3

2/3,3/2

(v - 1) 1372, (4)

g

cr

- (Q/koc)
1/3

3/2

or (8.8, = (G - DMk erm?? -1 ()
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Thus for a charged particle moving through a wiggler
in a uniform axial guide field, the orbit can be nearly
helical if § < {., all along the wiggler but would depart
significantly from helicity if ¢ > Eere

Experiment

Although electron beams of interest for practical free
electron lasers have relativistic energies, the phenomenon
of helical orbit stability discussed above is not fundamen-
tally a relativistic effect. Thus if the electron energy V
is much less than 511 keV, so that we approximate Y2 - 1=
(2eV/me? ), we can write Eq. (5) as

2,1/3 3/2
(B /Bo)cr [ (8n mV/eB 2 ) -1]
(6)
- [(21.2Vl/2/B 3 ) 2/3 ]3/2
where, in the final expression, V is in volts, B, is in

gauss, and 21, is in cm.

In the experiments to be described, electron beams in
the energy range 4-14 keV were employed; a simple dc low-
current (~ 10's of mA) crt electron gun could then be used
to provide the electron beam with a dizmeter of about 1 mm
and energy resolution of better than 1%. The helical wig-
gler, to be described more fully below, had a period ¢, =
3.6 cm. Thus, from Eq. (6), one sees that the transition
from stable to unstable orbits would occur for very small
wiggler fields indeed if the axial magnetic field were
adjusted to be slightly above 5.89v1/ gauss, i.e. in the
range between 350 and 700 gauss. The axial magnetic field
was in fact adjusted to dc values between about 300 to 3000
gauss. For a given electron energy V and axial field B,
the wiggler field amplitude B, was varied continuously in
time by triggering a spark gap to discharge a capacitor in
series with the wiggler coil. The ensuing RC-decay could
be calibrated to give B, values as a function of time
during each discharge puise.

The wiggler cocil itself was a bifilar periodic winding

of 3 mm diam conductor would on a 53 mm diam cylinder with
a uniform pitch of 36 mm. The uniform portion was 666 mm
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long, i.e. 18.5 periods. At each end the wiggler diameter
tapered outward to 100 mm over a 175 mm length. It was
found that, in addition to provision of these tapered end
portions, careful symmetrizing of the conductors at the end
turns was essential for obtaining stable beam tramsmission
through the wiggler. Furthermore, flux shunts at the ends.
were required to produce a smooth uniformly tapered transi-
tion into the wiggler. A plot of one component of the
transverse field produced by this wiggler is shown in Fig.
2. (The uniform portion is not shown, as this portion is

%
>
R
>
>
R

Figure 2. Measured transverse magnetic field
at the entrance end of the wiggler.

- relatively easy to produce.) This wiggler produced a field
' of about 20 gauss/kA, and fields up to 250 gauss have been
routinely produced. :

Severzl beam analyzers were constructed to examine the
properties of the beam within the uniform portion of the
wiggler. For the data to be presented in this paper, a
movable analyzer.was used consisting of two parallel plates
spaced by 9 mm and positioned normal to the axial magnetic
field. The first plate had a 3 mm hole in its center
through which the beam would pass either in the absence of
any wiggler field, or for wiggler field wvalues below the
critical value. In this case, paraxial helical orbits with
i diameter less than 3 mm were ascertained to be produced, so
that the beam current was collected by the back plate. If
) the orbit were to involve excursions of more than 3 mm away
from the axis, current would be collected by the front
plate. When the beam was seen to migrate back and forth
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between the two analyzer plates as the wiggler field decayed
with time, this was taken as direct evidence for a strongly
non-helical orbit. Two examples of this migration are

shown in Fig. 3, which is traced from oscillograms of the

CURRENT

i |

0 0.2 0.4
TIME (msec)

| L
0.6 0.8

Figure 3. Measured currents to front (f)

and back (b) plates of
Arrows indicate abrupt
non-helical to helical
example is for a lower
than upper example, so
occurs at higher value

beam analyzer.
transitions from
orbits. Lower
axial field value
that transition
of wiggler field.

current waveforms to the analyzer plates as a function of
time following firing of the wiggler field spark gap. The

examples are for two different

axial field values (lower

for the bottom example than for the top). One sees the
beam gyrate wildly back and forth between the two plates
until a certain time, denoted by the arrows, when the wig-
gler field has decayed to a specific value. The tramsition

to beam collection by the back

plate alone (i.e. paraxial

helical orbits) is seen to be abrupt. Values of wiggler
field were noted at each transition point observed when
axial field and beam energy were varied. These values are
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plotted in Fig. 4 as a function of the independent variable
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Figure 4. Measured values of B./B, at which
transitions from stable to unstable orbits
were observed, for electron energies between
4-14 keV. Solid line is theoretical pre-
diction.

(5.89V:L/2/Bc)2/3 - 1, as suggested by Eq. (6) for 24 =
3.6 cm. The straight line in Fig. 4 is this same variable
raised to the three-halves power.

Transitions from stable to unstable orbits have been
observed for wiggler fields as low as 2 gauss (lowest
datum in Fig. 4).

Discussion
Magnetic wigglers for free electron laser applications

produce helical electron orbits in the absence of an axial
guide field, but may produce strongly non-helical orbits
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if an axial field is present. One predicted (8) conse-
quence of this phenomenon is an abrupt jump in the orbit
from non-helical to helical once the magnetic wiggler field
streugth falls below a critical value, for fixed axial

‘field and beam energy. This behavior has been observed ex-

perimentally over a wide range of (non-relativistic) beam
energies and axial field strengths. The data follow an
approxlma §7§e-halves power law in the variable

(8w mV/eB 1, as suggested by the theory. The data
farl systematlcally about 10-20% higher in this variable
than is predicted (corresponding to about a factor-of-two
smaller value of B¢/80 than is predicted). An overestimate
in measured electron beam.energies could explain the dis-
crepancy between theory and experiment, but measurement
accuracies are believed sufficient to rule this out. Finite
geometry effects, due either to off-axis departures of the
wiggler field from Eq. (1), or from the finite spatial
resolution of the analyzer, could also contribute to the
apparent discrepancy.

However, the crucial points for users of magnetic wig-
glers in. axial guide magnetic fields are (1), the care re-
quired in wiggler construction (especially at the "first"
turn, and within a gradual transition region) in order to
observe a paraxial helical orbit at all; and (2), the clear
observation of an abrupt transition between stable and un-
stable orbits at (sometimes very low) critical wiggler
fields, much as had been predicted by theory.

It may be that the non-helical orbits will be of util-
ity, although it would be easy to despair in attempting to
formulate a theory for free electron laser operation with
such a complex equilibrium state. These orbits can possess
large amplitude harmonic overtones (10) which should radiate
incoherent radiation at wavelengths a few time shorter than

20/272. It may even be possible to observe coherent ampli-

fication on such a spatial overtone of the fundamental
wiggler period; but speculation carries risks....
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DEGRADATION IN GAIN FOR A FREE ELECTRON LASER
AMPLIFIER DUE TO ELECTRON MOMENTUM SPREAD™

A. Fruchtman and J. L. Hirshfield’ 'i
Center for Plasma Physics
and Racah Institute of Physics
Hebrew University of Jerusalem, Israel

A finite spread in axial momentum for the electron beam in
a free electron laser zmplifier is shown to decrease the
small-signal gain. For millimeter and sub-millimeter wave
amplifiers, where exponential growth dominates the gain, it
iz shown that the gain is approximately 3 db below that for
a cold beam if the relative momentum spread (8u/u)j/; =
(G°/248)1/2(A0/L), where Go >> 1 is the gain in db for the
cold-beam case, A, is the magnetic wiggler period, and L is
the amplifier length. Exact numerical examples are given
for representative FEL amplifiers at 35 and 550 GHz.

Key words: free electron laser, amplifier, electron momen-
tum spread.

Most theoretical work concerning amplification of
radiation in free electron lasers (FELs) deals of necessity
with idealized models. One idealization widely employed
involves the neglect of finite momentum spread of the elec-
tron beam. The underlying mechanism for small~signal ampli-
fication involves axial synchronization in propagation ve-
locity between one of the allowed modes of radiation sup-
ported by the beam, and the beam itself. Thus when a spread
in axial beam momentum is present, a mixing-in~phase can be
expected to degrade the amplification which would otherwise
be predicted for a cold beam. Prior workers (1,2) have
taken note of this fact and have provided estimates of the
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effect of momentum spread. This paper presents an exact
analytical model to account for finite momentum spread for
a particular distribution function. When exponential
growth dominates the gain, a simple approximate formula is
derived to estimate the loss in gain due to the momentum
spread. Exact numerical examples are also given for repre-
sentative FEL amplifiers at 35 and 550 GHz.

The basic FEL model adopted here is identical to that
treated by Bernstein and Hirshfield (B-H) (3). That work
gave an exact small-signal solution of the Vlasov-Maxwell
equations for the steady-state evolution of the co-propa-
gating disturbance which grows in space on a relativistic
electron beam passing along the axis of a helical magnetic
wiggler. The B-H theory was derived for a beam of arbitra-
ry momentum distribution in a wiggler of arbitrary strength,
but the solutions presented were for the case of a cold
beam, viz.,

fo(u989u) = Nod(a)S(B)G(u—U) . (1)

Here a and B are the two transverse components of canonical
angular momentum Uy - eAy/mc? and Uy - eAy/mcz, Ax and Ay
are the components of the wiggler's vector potential, Uy
and U, are the transverse components of translational momen-
tum, and U = (y2 - 1)1/2 is the total momentum as related

to the relativistic energy factor . (All momenta are
normalized to mc.) Eq. (1) thus describes a beam which,
prior to entering the wiggler, contains electrons possess-
ing both zero transverse momentum and unique axial momen-
tum U.

As merntioned above, an important source of degraded
amplification is the finite spread of axial momentum on '
the electron beam. In the work reported here, we choose ﬁ
the simplest distribution capable of describing such a
spread, viz.,

H(u-Ul) - H(u-Uz)
fo(a,B,u) = Noé(u)G(B) G s (2)

where H(x) = 1 for x > 0, H(x) = 0 for x < 0, and AU =

U - Uy > 0. This distribution can of course not be real-
ized in nature [in the same sense that the distribution
given by Eq. (1) cannot]. It may, however, not be a bad
approximation for certain accelerators (except for the

2
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sharp edges); but its utility here is that it enables an
analytic form to be derived for the governing dispersion
relation,.

The goal of the present work is identical to that in
B-H, namely to calculate the power gain G (in db) for a
single pass of electromagnetic radiation along a FEL ampli-
fier of length L.

oG/10

*
1 = az(L)az(L) -1 . 3

Here a;(L) is the dimensionless wave electric field at the
amplifier output, normalized to unity at the input. The
subscript "2" labels one of the three polarizations per-
mitted, namely that which twists in space a quarter-period
behind the wiggler's vector potential. [Eqs. (35) and (37)
in B~-H give the other two polarizations.]

The wave amplitude as(L) is a superposition of several
co-propagating normal modes, each with its wavenumber kj,
viz.,

B(k.)
aZ(L) =:E:§Tz%-y exp(ikjL) . (&)
3 h|

) The relative mode amplitudes B(kj)/R'(k;) are prescribed
,; once boundary conditions are set. R(k-} = 0 is the disper-
H sion relation for the system which determines the kj(w),
assuming R™1(k) to have simple poles. For the cold beam
case R(kj) is a sixth-order polynomial.

L R = [Gew)? = 2D 0o )% - 211 Gxx )2 = %)
()
; + g2 xP-p%) (P alan?y

where x = kc/w, Xo = koc/w; & = (wp/?)(U/yUg)l/z, b =
(1-0262)1/2, y = y/U,, U, = (U2-£2)1/2, and € = - eBo/mc2k,.
The wiggler field strength and wavenumber are B, and k.
This equation has been obtained as well by Sprangle (1),

and related forms have been derived and discussed by

Kroll and McMullin (2) and by Kwan, Dawson, and Lin (4).
When § << xq << 1, a reduced form of Eq. (5) is a good
approximation, namely

Hirshfield l




R0 = [ew)? - 62D 10x - e )] + 3 5265

(6)

2 o '

For ky/k X (1+£2)/2¥? the maximum growth occurs near b+xg

-u = (62£2x0/2)1/2. To requisite accuracy the roots are
X = + (62£2x°/2)l/3exp(-ni/3)
x, = xI (7
Xy = M- (<52€2xo/2)l/3 .

These roots are of use in scaling estimates when exponen-
tial gain is dominant. Exact numerical evaluations given
in B-H show, however, that Eq. (7) cannot be used to deter-
mine the entire gain spectrum.

When Eq. (2) is employed as the distribution function
all the momentum-space integrals in the Vlasov formulation
can be expressed analytically. We then find

R(x) = [(x=u))(x=u,) = 6'2(1+52)][(x+x°)2 -b'? &
8
x [e=x )2 = 012 + g25r26d-ah) Py

where

o
N
n
'._.I
|
€ €
NJU N
D'H
c
Ps)
=)
<
(%)
+
c
N
N
v

. d =1 -

eNkeN

1
AU

Ay - 1+ Ez 1 1 .
Au Uzl UzZ ’

Ay = Mg = yp < 0, Y%,Z = ] + Ui’z’ U%I,Z = U%,Z - EZ, and
v1,2 = Yl,z/Uz1,2-
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When AU/U << 1, ap = = UAU(L +£2)yu3, ¢' = &, and
b' = d = b. Thus the only effect of finite momentum spread
in this limit is in the factor (x - u)(x - p~) = (x - w2
- (Au/2)? in the first bracket in Eq. (8), where
T = (u; + p2)/2. The close similarity between Egqs. (8) and
(5), and the simplicity of the former, make determination
of the roots ki a routine matter. This simplicity is not
enjoyed when tﬂe momentum spread is described by functions
fo(a,8, U) with non-zero values of 3f,/5U in a finite
interval, because of wave-particle resonance effects.

As for the cold-beam case, where §' << x5 << 1, Eq.
(8) may be reduced to the approximate form

RGO = (D)% = (aw/2)210x - (o' )1 + 26" %x /2 = 0. (9)

If (Au/2)2 << 3(§26'2xo/2)1/3, the roots of Eq. (9) near
b' + x5 - U = (5‘6'2x0/2)l 2 are approximately

X, = U+ (525'2x /2)1/3exp(in/3)
o
+ %(Lu/.?)z(gzé'2:(0/2)-1/3e:;p(—i'.'/3)
* (10)
xz = Xl
xy = 5 = (5282 /3 - TewnPte e 7

Thus the spatial growth constant Imx; is seen to decrease
on account of momentum spread as

(202 VWO 1 (aN22, Y3
Imxl-5<a 5 xo/2) -3(2—) £26 xo/2> . a

For pure exponential gain, i.e. excluding the 15.6 db input
coupling loss (see B-H), one has

G = 54.58(L/)\)Imxl db (12)

where A is the radiation wavelength. From Eq. (l1) we can
write G = G, - G}, where Gy is the gain with no momentum
spread, and G) is the small decrease due to the spread

i Hirshfield L
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1/3

(g db . (13)

G, = 54.58(L/N) '3 (£%6%x /2)
For £ = 0.47, X = 4.9, x5 = 2.73 x 1072, 62 = 3.80 x 10-6,
and L/X = 367 (corresponding to a representative FEL ampli-
fier to be discussed below), Eq. (13) gives G, = 39.1 db.
[If one subtracts the 15.6 db input coupling loss, the
actual gain would be 23.5 db (at a wavelength of 560 um).]
Now

54.58 L 2,1 2.2
G, =—=— < (AW (5 &"6"x)
1 8/3 A 2 o

173 g (14)

Substituting from Eq. (13) gives the value of Ap which
would bring about a gain loss G,

3

(a2 = 5.37 x 10” cocl(x/m2 . (15)

For the example cited above with L/A = 367 we find Ap =
2.16 x 1073 for Go = 39.1 db and G, = 3 db, i.e. for &
factor-of-two decrease in power amplification. This corre-
sponds to a relative momentum spread AU/U =

|au] [yul/u2(1 + §2)] of 0.041.

Equation (10) also suggests that the frequency at
which gain has its peak value will decrease as momentum
spread increases.

Exact numerical evaluations for small-signal gain G
have been carried out using the full dispersion relation
[Eq. (8)], and with amplitudes [see Eq. (4)] appropriate
to a perfectly matched amplifier output. One example is
for a mm-wave amplifier employing an electron beam typical
of that produced by a small Febetron accelerator, with y =
1.78, J = 100 A/cm®, Ay = 3.6 cm, £ = 0.2, and L = 36 cm.
Gain curves are shown in Fig. 1 for zero momentum spread,
and for finite momentum spreads between 5 and 20%. Gain is
seen to fall by one-half for AU/U = 0.15, and the frequency
for peak gain drops by about 6%. A second example is for a
sub-mm wave amplifier employing a beam typical of the VEBA
accelerator at Naval Research Laboratory, with y = 4.9,

J =6 kA/em®, \g = 2.0 cm, £ = 0.47, and L = 20 cm. For
this case the computed gain curves are shown in Fig. 2,
again for zero momentum spread and for spreads between

5 and 20%.
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Figure 1. Gain curves for a FEL using a 400 kV

electron beam, for electron momentum spread
between 0 and 207%.
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N FEL Amplifier Using VEBA Accelergtor
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Figure 2. Gain curves for a FEL using a 2.0 MV

electron beam, for electron momentum spread
between 0 and 207%.
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Comparisons between the exact results (Fig. 2) and the -
approximata predictions [Eqs. (12-15)] are instructive.
The peak gain for the cold beam is 17.8 db (i.e. 60x) com—
pared with the approximate value of 23.5 db. The gain
drops by half to 14.8 db (i.e. 30x) for AU/U somewhat
greater than 107%; our approximate result is 4.1%. These
comparisons for the example presented in Fig. 1 are not
meaningful since the peak gain G, is less than 7.8 db (6x).

Finally, we point out the scaling laws suggested by
Egs. (12-15), valid for high gain devices where exponential
growth dominates. For negligible momentum spread,

1/3L52/3A-2/3A-1/3 b

G ~J
o 0
or equivalently (16)
6, ~ Jl/3(L/A°)§2/374/3 b .

For the gain decrease G; << Gy due to finite momentum
spread we have

6,6, (AU/U)Z(L/AO)Z @’ . an

Eq. (17) indicates that high gain short amplifiers are less
susceptible to gain degradation due to momentum spread,

A than are low gain long amplifiers. This scaling is inde-

' pendent of A and y provided G, is high. For G; = 3 db, the
numerical value for Eq. (17) gives (AU/U),/, = (Go/248)1/2
(1o/L), where (AU/U)I/Z is the relative momentum spread for
a factor-of-two decrease in gain. Gain degradation for
long~wiggler FELs operating in the collective regime can
be expected to be serious unless AU/U << 1.

It should be added as a caveat however that momentum
spread may not always degrade gain in a FEL. The geomet-
rical optics theory for a FEL amplifier (5) shows that
gain may arise from a wave-particle resonance, provided
f,(a,8,u) is not symmetric in u about its maximum, and
provided 3f,/3u has the requisite sign at the wave's phase
velocity. It is expected that this mechanism would compete
with that discussed in the present paper, and could in fact
allow substantial gain in the presence of tailored momentum
spread.
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